inorganic compounds

Acta Crystallographica Section C

Crystal Structure Communications

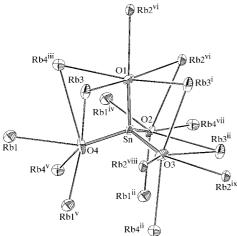
ISSN 0108-2701

Rubidium stannate(IV), Rb₄SnO₄

Constantin Hoch and Caroline Röhr*

Institut für Anorganische und Analytische Chemie, Universität Freiburg, Albertstrasse 21, D-79104 Freiburg, Germany

Correspondence e-mail: caroline@ruby.chemie.uni-freiburg.de


Received 27 July 1999 Accepted 25 October 1999

The title compound, tetrarubidium tetraoxatin(IV), crystallizes with the Na₄CoO₄ structure type, showing discrete SnO_4^{4-} anions as main building blocks. The structure is thus isotypic with a series of corresponding compounds A_4MO_4 (A = alkali metal and M = group IV element).

Comment

 Rb_4SnO_4 crystallizes in the triclinic space group $P\overline{1}$ and is isotypic with the Na_4CoO_4 structure type (Jansen, 1975). Corresponding alkaline metal oxotetrelates(IV) with the same structure type are the stannates Na_4SnO_4 (Hoppe & Bernet, 1988), K_4SnO_4 (Marchand *et al.*, 1975) and Cs_4SnO_4 (Bernet & Hoppe, 1990), the plumbates of Na, K and Rb (Brandes & Hoppe, 1994; Nowitzki & Hoppe, 1983), the germanates of Na and K (Halwax & Völlenkle, 1985), and Na_4SiO_4 (Baur *et al.*, 1986).

The Sn atoms in Rb₄SnO₄ are coordinated by four O atoms in a slightly distorted tetrahedral environment, with Sn—O distances ranging from 1.93 (1) to 1.977 (9) Å and O—Sn—O angles from 105.1 (4) to 115.1 (4)°. As in all stannates of the types A_4 SnO₃ and A_4 SnO₄ (A = alkali metal), all the O ligands are coordinated by five alkali metal atoms and one Sn atom in

Figure 1ORTEP (Johnson, 1968) view of the [SnO₄]⁴⁻ anion in Rb₄SnO₄, together with the coordination spheres of the O atoms. Displacement ellipsoids are shown at the 50% probability level.

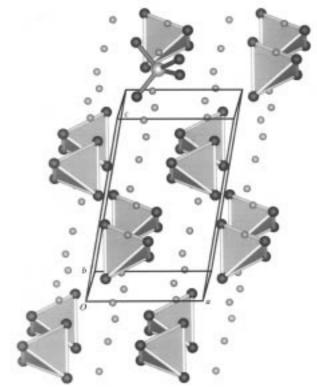
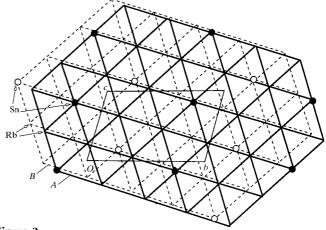



Figure 2 View of the unit cell of the crystal structure of Rb₄SnO₄. Small spheres denote Rb, while tetrahedra denote SnO₄.

a distorted octahedral geometry (Fig. 1). The Sn-O distances in the title compound are thus comparable with those observed in the stannates(IV) K_4SnO_4 (Sn-O 1.95–1.96 Å) or Cs_4SnO_4 (Sn-O 1.94–1.97 Å) and they differ significantly from those observed in the stannates(II) K_4SnO_3 (Sn-O 2.041–2.052 Å; Röhr, 1995) or Cs_4SnO_3 (Sn-O 2.028–2.049 Å; Röhr & Zönnchen, 1998).

A view of the unit cell of Rb₄SnO₄ is given in Fig. 2. The coordination numbers of the Rb cations vary from 4 (Rb1) to 4+1 (Rb4) and 5 (Rb2, Rb3). A similar description of the packing as given for Cs₄PbO₄ (Müller *et al.*, 1991) or Cs₄SnO₃ (Röhr & Zönnchen, 1998) is also possible for Rb₄SnO₄; the Rb

Figure 3 Hexagonal closed-packed Rb₄Sn nets in Rb₄SnO₄ (stacking: *A-B*; circles indicate Sn positions) running perpendicular to the [100] direction.

and Sn atoms together form planes of nearly hexagonal closepacked layers running perpendicular to the [100] direction. These layers are stacked in the sequence A-B, where the stacking is intermediate between the hexagonal closed-packed arrangement and the α -U structure type observed for the packing of Cs and Sn in Cs₄SnO₃ (Fig. 3).

The Raman spectrum of Rb₄SnO₄ recorded at room temperature shows four bands that can be assigned to the four normal modes of an ideal tetrahedron XY_4 . The totally symmetric stretching mode (v_1, A_1) is observed at 638 cm⁻¹ and the asymmetric stretching mode (v_3, F_2) is observed as a weak band at 620 cm⁻¹. The symmetric (v_2 , E) and the antisymmetric (v_4, F_2) bending modes are observed at 188 and 137 cm⁻¹, respectively. This assignment is consistent in the series of MO₄ silicates, germanates and stannates (Nyquist & Kagel, 1997).

Experimental

Single crystals of Rb₄SnO₄ were formed by the reduction of a mixture of RbO2 and SnO with elemental rubidium. Liquid rubidium (756.9 mg, 8.856 mmol; Maassen, 99%) was reacted with RbO₂ (346.8 mg, 2.952 mmol) and powdered SnO (399.3 mg, 2.965 mmol; ABCR, 99%) in corundum crucibles under an argon atmosphere. The mixtures were heated up to 1000 K within 5 h and cooled to room temperature at a rate of 4 K h⁻¹. The thick honey-yellow hygroscopic crystals of the title compound were handled in a dry-box and prepared in capillaries filled with dried oil. The X-ray powder pattern of the sample could be indexed on the basis of the reported singlecrystal data of Rb₄SnO₄ but show additional reflections of Rb₂SnO₂ (Braun & Hoppe, 1982). The room-temperature Raman spectrum of a single crystal sealed in a Lindemann capillary was recorded with a Raman microscope attached to an FT spectrometer (Bruker IFS66V).

Crystal data

Rb ₄ SnO ₄	Z = 2
$M_r = 524.57$	$D_x = 4.312 \text{ Mg m}^{-3}$
Triclinic, $P\overline{1}$	Mo $K\alpha$ radiation
a = 6.773 (2) Å	Cell parameters fro
b = 6.776 (3) Å	reflections
c = 10.122 (3) Å	$\theta = 7.3 – 21.4^{\circ}$
$\alpha = 71.72 (3)^{\circ}$	$\mu = 27.047 \text{ mm}^{-1}$
$\beta = 79.48 (2)^{\circ}$	T = 293 (2) K
$\gamma = 66.64 (2)^{\circ}$	Plate, pale yellow
$V = 404.0 (2) \text{ Å}^3$	$0.10 \times 0.07 \times 0.04$

Data collection

Enraf-Nonius CAD-4 diffract-	R
ometer	θ_{r}
$\omega/2\theta$ scans	h
Absorption correction: ψ scan	k
(North et al., 1968)	1:
$T_{\min} = 0.109, T_{\max} = 0.339$	3
1710 measured reflections	
1575 independent reflections	

Refinement

Refinement on F^2
$R[F^2 > 2\sigma(F^2)] = 0.056$
$wR(F^2) = 0.150$
S = 1.101
1575 reflections
83 parameters
$w = 1/[\sigma^2(F_o^2) + (0.1006P)^2 +$
1.5556P] where $P = (F_o^2 + 2F_c^2)/3$

```
om 25
mm
```

$R_{\rm int}=0.049$
$\theta_{\rm max} = 26^{\circ}$
$h = 0 \rightarrow 8$
$k = -7 \rightarrow 8$
$l = -12 \rightarrow 12$
3 standard reflections
frequency: 120 min
intensity decay: none

```
(\Delta/\sigma)_{\rm max} < 0.001
\Delta \rho_{\text{max}} = 4.132 \text{ e Å}^{-3}
\Delta \rho_{\rm min} = -4.368~{\rm e}~{\rm \mathring{A}}^{-3}
Extinction correction: SHELXL97
   (Sheldrick, 1997)
Extinction coefficient: 0.0139 (17)
```

Table 1 Selected geometric parameters (Å, °).

Sn-O4	1.934 (10)	Rb2-O2	3.024 (9)
Sn-O3	1.959 (9)	Rb3-O2 ⁱⁱⁱ	2.877 (9)
Sn-O2	1.962 (8)	Rb3-O1 ^{vii}	2.880 (9)
Sn-O1	1.977 (9)	Rb3-O1	2.947 (8)
$Rb1-O4^{i}$	2.758 (11)	Rb3-O3vii	3.056 (9)
$Rb1-O2^{ii}$	2.773 (9)	Rb3-O3 ⁱⁱⁱ	3.063 (9)
Rb1-O2 ⁱⁱⁱ	2.783 (8)	$Rb4-O4^{i}$	2.858 (11)
Rb1-O4	2.797 (11)	Rb4-O1viii	2.873 (9)
Rb2-O1 ^{iv}	2.764 (9)	Rb4-O3 ⁱⁱⁱ	2.924 (9)
Rb2-O1	2.802 (8)	$Rb4-O2^{ix}$	2.985 (9)
Rb2-O3 ^v	2.855 (9)	Rb4-O4 ^{viii}	3.252 (12)
Rb2-O3 ^{vi}	2.932 (10)		,
O4-Sn-O3	113.4 (4)	O4-Sn-O1	105.1 (4)
O4-Sn-O2	115.1 (4)	O3-Sn-O1	109.8 (4)
O3-Sn-O2	107.3 (4)	O2-Sn-O1	105.7 (3)

Symmetry codes: (i) -x, -y, -z; (ii) -x, 1-y, -z; (iii) x-1, y, z; (iv) -x, 1-y, 1-z; (v) x, 1+y, z; (vi) 1-x, -y, 1-z; (vii) -x, -y, 1-z; (viii) x, y-1, z; (ix) x - 1, y - 1, z.

 $\Delta \rho_{\text{max}}$ and $\Delta \rho_{\text{min}}$ lie within 0.8 Å of the Sn atoms.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: HELENA (Spek, 1993); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP (Johnson, 1968) and DRAWxtl (Finger & Kroeker, 1997); software used to prepare material for publication: SHELXL97.

We would like to thank the Adolf-Messer-Stifung, the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support. We are also grateful to A. Becherer and Dr H. Rotter for their help with the Raman spectroscopy.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BR1266). Services for accessing these data are described at the back of the journal.

References

Baur, W. H., Halwax, E. & Völlenkle, H. (1986). Monatsh. Chem. 117, 793-797. Bernet, K. & Hoppe, R. (1990). Z. Anorg. Allg. Chem. 587, 145-156. Brandes, R. & Hoppe, R. (1994). Z. Anorg. Allg. Chem. 620, 1346-1350. Braun, R. M. & Hoppe, R. (1982). Z. Naturforsch. Teil B, 37, 688-694. Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.

Finger, L. & Kroeker, M. (1997). DRAWxtl. http://granite.ciw.edu/~finger/ DRAWxtl.html.

Halwax, E. & Völlenkle, H. (1985). Monatsh. Chem. 116, 1367-1376.

Hoppe, R. & Bernet, K. (1988). Eur. J. Solid State Inorg. Chem. 25, 119-134. Jansen, M. (1975). Z. Anorg. Allg. Chem. 417, 35-40.

Johnson, C. K. (1968). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA. [Openwindows Version (1991) of Norimasa Yamazaki, Tokyo, Japan.]

Marchand, P., Piffard, Y. & Tournoux, M. (1975). Acta Cryst. B31, 511-514. Müller, U., Bernet, K. & Hoppe, R. (1991). Z. Anorg. Allg. Chem. 612, 143-

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-

Nowitzki, B. & Hoppe, R. (1983). Z. Anorg. Allg. Chem. 505, 105-110, 111-

Nyquist, R. A. & Kagel, R. O. (1997). Handbook of Infrared and Raman Spectra of Inorganic Compounds and Organic Salts, Vol. 4. London: Academic Press.

Röhr, C. (1995). Z. Anorg. Allg. Chem. 621, 757-760.

Röhr, C. & Zönnchen, P. (1998). Z. Anorg. Allg. Chem. 624, 797-801. Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (1993). *HELENA*. University of Utrecht, The Netherlands.